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cumulants): for f1, . . ., f local functions of the field, the n-th Ursell function is
defined by

n

0 n e
Un(fi,....fn) = =———— lo ( ezi:1t’f’> ==ty =0 -
n(fi, - fn) 5t on o8 w( )) lo==ti=0
where 1 is the law of X.
Under some regularity assumptions, the Ursell functions determine entirely the law p.

We are going to be interested in the second Ursell function: the covariance (between f;
and f>).

> For the sake of concreteness, consider the Ising model on Z9 given by the (formal)

Hamiltonian:
H=— Z Jijoio;
{ijycze
with o := (07);cze € {£1},Jij > 0and the Boltzmann distribution:
Ps(w) o< e AH),

with 8 > 0 and some configuration w € {:|:1}Zd.
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We also define the inverse critical temperature by

B. = inf{B >0 inf (5oox)s > 0}.

inf
xczd

If there exists R such that If J;; = 0 for [|i — j|| _, > R, we say that the model is
finite-range.
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We also define the inverse critical temperature by

B =inf{B >0: inf (ooox)s > 0}.
xezd

If there exists R such that If J;; = 0 for [|i — j|| _, > R, we say that the model is
finite-range.

» Any local local functions f and g, there exist CQ, ¢} € R such that

Z CfUA g= Z ngﬁa

ACsupp(f) BCsupp(f)

with o, 1= H oj. In particular, one has
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ACsupp(f) BCsupp(f)

with o, 1= H oj. In particular, one has

i€A

(fi9)s := COVJPg[f,g] = Z Cch(aA,aB

ACsupp(f)
BCsupp(g)

Therefore, understanding (f; g) 5 amounts to understanding (oa; 0s) s-
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» We will take 3 # [3.. Moreover, we will take J super-exponentially decaying: for any
¢ > 0,one has

lim e, =o.
[Ix]| =00 ’
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» We will take 3 # [3.. Moreover, we will take J super-exponentially decaying: for any
¢ > 0,one has
lim ey, . =o.
[Ix|| =00 !
We first consider the simplest case: |A| = |B| = 1. We take A = {0} and B = {x} with
Il > 1.

Question: What can be said about the asymptotic behaviour of (oo; ox) g as ||x|| — oo
?
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Two-point function: Ornstein and Zernike

» In 1914 and 1916, Ornstein and Zernike developed a (heuristic)
theory of correlations with quickly decaying interactions. In partic-
ular, they concluded that, at large distances away from the critical
temperature, the spin-spin correlation of the Ising model satisfies

(o0; )5 ~ x|,

» Is it possible to establish this result rigourously ?
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0Z sharp asymptotics when 3 < (5.

» One has the following Ornstein-Zernike asymptotics:

Theorem [A-OTT-VELENIK 2021]
Assume that 8 < f.. Let5 € S®~". Then, as n — oo,

V5(3)

<0'0 1 Ong)p = n(d=1)/2 e a0 (1 + 0(1))7

where the functions W and v3(5) are positive and analytic in S.
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> Wu 1966, Wu et al 1976: exact computation, planar model, 5 < .
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Probabilistic picture behind 0Z asymptotics

» In order to study the subcritical Ising model, one can different graphical
representations, for instance the high temperature expansion

(oo )s = > ap(v)-

v:0—x

» The techniques developped during last two decades allow to couple “structurally
1D objects” with good mixing properties to directed random walks.
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Probabilistic picture behind 0Z asymptotics

» In order to study the subcritical Ising model, one can different graphical
representations, for instance the high temperature expansion

(ovios = D as(7).

¥:0—x

» The techniques developped during last two decades allow to couple “structurally
1D objects” with good mixing properties to directed random walks.

» Using this coupling, we can in many cases reduce difficult questions arising in the
Ising model to much simpler (and more classical) ones about random walks.
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Asymptotics for general A and B

» Given A, B € Z% and § € S°~", we investigate the asymptotic behavior of

(0a; Og1ns)

asn — oo.
» Of course, by symmetry, (o¢c)g = 0 whenever |C| is odd.
~~ (oa; 08) g = 0 whenever |A| + |B| is odd.

» We are thus left with two cases to consider:

0dd-odd correlations Even-even correlations

|Al, |B| both odd |A|, |B| both even

» In the Odd-0dd case, the OZ asymptotics still hold.
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Even-even correlations

» Substantially more delicate!
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» However, concerning the prefactor, two conflicting predictions were put forward:

Polyakov 1969 Camp, Fisher 1971
(nlogn)™ d= n~? foralld >2
n=@=" d>4

(Note that these predictions only coincide when d = 2, where they both agree with the
exact computation obtained in Stephenson 1966 and Hecht 1967.)
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IO o~ 2/ (1+o(1)

» However, concerning the prefactor, two conflicting predictions were put forward:

Polyakov 1969 Camp, Fisher 1971
(nlogn)™ d= n~? foralld >2
n=@=" d>4

(Note that these predictions only coincide when d = 2, where they both agree with the
exact computation obtained in Stephenson 1966 and Hecht 1967.)

» It turns out that Polyakov was right. This was first shown in

> Bricmont-Fréhlich 1985: Al=|B|=2 pB<1 d>=&
> Minlos-Zhizhina 1988, 1996:  |A|,|Bleven S <1 d>2
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Even-even correlations

» The best nonperturbative result to date is the following:

n’ whend = 2,
Let 7(n) = { (nlogn)’ whend = 3,
=t when d > 4.

Theorem [OTT-VELENIK 2019]

Letd > 2and B < B.. LetA, B € Z° with |A| and |B| even and let5 € S~
Then, there exist constants 0 < C_ < C; < oo (depending on A, B, S, 3) such

that, for all n large enough,

C+ 02N

7(n)

c_ _
—e 2p(En < <0'A;0'B+n§>ﬁ <

7(n) -
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New directions and open problems

» Unclear how to implement the modern OZ theory, so the understanding remains
limited for 3 > (. and d > 3. 0Z asymptotics should hold (perturbative results by
Bricmont-Frohlich 1985).
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New directions and open problems

» Unclear how to implement the modern OZ theory, so the understanding remains
limited for 3 > (. and d > 3. 0Z asymptotics should hold (perturbative results by
Bricmont-Frohlich 1985).

» The OZ asymptotics are false for the nearest-neighbor model on the square lattice
(Wu-McCoy-Tracy-Barouch 1976), but are expected to hold for any other finite-range
model.

» The OZ decay was proved in the ground state of the quantum Ising model in a
strong transverse magnetic field (Kennedy 1991). Could it be done more generally with
the modern OZ theory ?
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THANK YOU AND BUEN APETITO!
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