Correlation Functions in Classical Statistical Physics

Yacine Aoun

Université de Genève

Context

Context

- Goal: Given a random field X on \mathbb{Z}^{d}, describe X.

Context

- Goal: Given a random field X on \mathbb{Z}^{d}, describe X. Possible via Ursell functions (or cumulants): for f_{1}, \ldots, f_{n} local functions of the field, the n-th Ursell function is defined by

$$
U_{n}\left(f_{1}, \ldots, f_{n}\right)=\left.\frac{\partial^{n}}{\partial t_{n} \ldots \partial t_{1}} \log \left(\mu\left(\mathrm{e}^{\sum_{i=1}^{n} t_{i} f_{i}}\right)\right)\right|_{t_{1}=\cdots=t_{n}=0}
$$

where μ is the law of X.
Under some regularity assumptions, the Ursell functions determine entirely the law μ.

Context

- Goal: Given a random field X on \mathbb{Z}^{d}, describe X. Possible via Ursell functions (or cumulants): for f_{1}, \ldots, f_{n} local functions of the field, the n-th Ursell function is defined by

$$
U_{n}\left(f_{1}, \ldots, f_{n}\right)=\left.\frac{\partial^{n}}{\partial t_{n} \ldots \partial t_{1}} \log \left(\mu\left(\mathrm{e}^{\sum_{i=1}^{n} t_{i} f_{i}}\right)\right)\right|_{t_{1}=\cdots=t_{n}=0}
$$

where μ is the law of X.
Under some regularity assumptions, the Ursell functions determine entirely the law μ.
We are going to be interested in the second Ursell function: the covariance (between f_{1} and f_{2}).

Context

- Goal: Given a random field X on \mathbb{Z}^{d}, describe X. Possible via Ursell functions (or cumulants): for f_{1}, \ldots, f_{n} local functions of the field, the n-th Ursell function is defined by

$$
U_{n}\left(f_{1}, \ldots, f_{n}\right)=\left.\frac{\partial^{n}}{\partial t_{n} \ldots \partial t_{1}} \log \left(\mu\left(\mathrm{e}^{\sum_{i=1}^{n} t_{i} f_{i}}\right)\right)\right|_{t_{1}=\cdots=t_{n}=0}
$$

where μ is the law of X.
Under some regularity assumptions, the Ursell functions determine entirely the law μ.
We are going to be interested in the second Ursell function: the covariance (between f_{1} and f_{2}).

- For the sake of concreteness, consider the Ising model on \mathbb{Z}^{d} given by the (formal) Hamiltonian:

$$
H=-\sum_{\{i, j\} \subset \mathbb{Z}^{d}} J_{i, j} \sigma_{i} \sigma_{j}
$$

with $\sigma:=\left(\sigma_{i}\right)_{i \in \mathbb{Z}^{d}} \in\{ \pm 1\}, J_{i, j} \geq 0$ and the Boltzmann distribution:

$$
\mathbb{P}_{\beta}(\omega) \propto \mathrm{e}^{-\beta H(\omega)}
$$

with $\beta \geq 0$ and some configuration $\omega \in\{ \pm 1\}^{\mathbb{Z}^{d}}$.

Context

We also define the inverse critical temperature by

$$
\beta_{c}=\inf \left\{\beta \geq 0: \inf _{x \in \mathbb{Z}^{d}}\left\langle\sigma_{0} \sigma_{x}\right\rangle_{\beta}>0\right\}
$$

If there exists R such that If $J_{i, j}=0$ for $\|i-j\|_{\infty} \geq R$, we say that the model is finite-range.

Context

We also define the inverse critical temperature by

$$
\beta_{c}=\inf \left\{\beta \geq 0: \inf _{x \in \mathbb{Z}^{d}}\left\langle\sigma_{0} \sigma_{x}\right\rangle_{\beta}>0\right\}
$$

If there exists R such that If $J_{i, j}=0$ for $\|i-j\|_{\infty} \geq R$, we say that the model is finite-range.

- Any local local functions f and g, there exist $c_{A}^{f}, c_{B}^{g} \in \mathbb{R}$ such that

$$
f=\sum_{A \subset \operatorname{supp}(f)} c_{A}^{f} \sigma_{A} \quad g=\sum_{B \subset \operatorname{supp}(f)} c_{B}^{g} \sigma_{B},
$$

with $\sigma_{A}:=\prod_{i \in A} \sigma_{i}$. In particular, one has

$$
\langle f ; g\rangle_{\beta}:=\operatorname{Cov}_{\mathbb{P}_{\beta}}[f, g]=\sum_{\substack{A \subset \operatorname{supp}(f) \\ B \subset \operatorname{supp}(g)}} c_{A}^{f} C_{B}^{g}\left\langle\sigma_{A} ; \sigma_{B}\right\rangle_{\beta}
$$

Context

We also define the inverse critical temperature by

$$
\beta_{c}=\inf \left\{\beta \geq 0: \inf _{x \in \mathbb{Z}^{d}}\left\langle\sigma_{0} \sigma_{x}\right\rangle_{\beta}>0\right\}
$$

If there exists R such that If $J_{i, j}=0$ for $\|i-j\|_{\infty} \geq R$, we say that the model is finite-range.

- Any local local functions f and g, there exist $c_{A}^{f}, c_{B}^{g} \in \mathbb{R}$ such that

$$
f=\sum_{A \subset \operatorname{supp}(f)} c_{A}^{f} \sigma_{A} \quad g=\sum_{B \subset \operatorname{supp}(f)} c_{B}^{g} \sigma_{B},
$$

with $\sigma_{A}:=\prod_{i \in A} \sigma_{i}$. In particular, one has

$$
\langle f ; g\rangle_{\beta}:=\operatorname{Cov}_{\mathbb{P}_{\beta}}[f, g]=\sum_{\substack{A \subset \operatorname{supp}(f) \\ B \subset \operatorname{supp}(g)}} \tau_{A}^{f} C_{B}^{g}\left\langle\sigma_{A} ; \sigma_{B}\right\rangle_{\beta}
$$

Therefore, understanding $\langle f ; g\rangle_{\beta}$ amounts to understanding $\left\langle\sigma_{A} ; \sigma_{B}\right\rangle_{\beta}$.

Context

- We will take $\beta \neq \beta_{c}$. Moreover, we will take J super-exponentially decaying: for any $c>0$, one has

$$
\lim _{\|x\| \rightarrow \infty} \mathrm{e}^{c\|x\|} j_{0, x}=0
$$

Context

- We will take $\beta \neq \beta_{c}$. Moreover, we will take J super-exponentially decaying: for any $c>0$, one has

$$
\lim _{\|x\| \rightarrow \infty} e^{c\|x\|} J_{0, x}=0
$$

We first consider the simplest case: $|A|=|B|=1$. We take $A=\{0\}$ and $B=\{x\}$ with $\|x\| \gg 1$.

Context

- We will take $\beta \neq \beta_{c}$. Moreover, we will take J super-exponentially decaying: for any $c>0$, one has

$$
\lim _{\|x\| \rightarrow \infty} e^{c\|x\|} J_{0, x}=0
$$

We first consider the simplest case: $|A|=|B|=1$. We take $A=\{0\}$ and $B=\{x\}$ with $\|x\| \gg 1$.

Question: What can be said about the asymptotic behaviour of $\left\langle\sigma_{0} ; \sigma_{x}\right\rangle_{\beta}$ as $\|x\| \rightarrow \infty$?

Two-point function: Ornstein and Zernike

- In 1914 and 1916, Ornstein and Zernike developed a (heuristic) theory of correlations with quickly decaying interactions. In particular, they concluded that, at large distances away from the critical temperature, the spin-spin correlation of the Ising model satisfies

$$
\left\langle\sigma_{0} ; \sigma_{x}\right\rangle_{\beta} \sim\|x\|^{-(d-1) / 2} \mathrm{e}^{-\nu_{\beta}(x)}
$$

- Is it possible to establish this result rigourously ?

$\mathbf{O Z}$ sharp asymptotics when $\beta<\beta_{c}$

- One has the following Ornstein-Zernike asymptotics:

Theorem

Assume that $\beta<\beta_{\mathrm{c}}$. Let $\vec{s} \in \mathbb{S}^{d-1}$. Then, as $n \rightarrow \infty$,

$$
\left\langle\sigma_{0} ; \sigma_{n \vec{s}}\right\rangle_{\beta}=\frac{\Psi_{\beta}(\vec{s})}{n^{(d-1) / 2}} \mathrm{e}^{-\nu_{\beta}(\vec{s}) n}(1+\mathrm{o}(1))
$$

where the functions Ψ_{β} and $\nu_{\beta}(\vec{s})$ are positive and analytic in \vec{s}.

$\mathbf{O Z}$ sharp asymptotics when $\beta<\beta_{c}$

- One has the following Ornstein-Zernike asymptotics:

Theorem

Assume that $\beta<\beta_{\mathrm{c}}$. Let $\vec{s} \in \mathbb{S}^{d-1}$. Then, as $n \rightarrow \infty$,

$$
\left\langle\sigma_{0} ; \sigma_{n \vec{s}}\right\rangle_{\beta}=\frac{\Psi_{\beta}(\vec{s})}{n^{(d-1) / 2}} \mathrm{e}^{-\nu_{\beta}(\vec{s}) n}(1+\mathrm{o}(1))
$$

where the functions Ψ_{β} and $\nu_{\beta}(\vec{s})$ are positive and analytic in \vec{s}.

- The above result has a long history. Some milestones are
\triangleright Ornstein-Zernike 1914, Zernike 1916: first (non-rigorous) derivation
\triangleright Wu 1966, Wu et al 1976:
\triangleright Abraham-Kunz 1977, Paes-Leme 1978:
\triangleright Campanino-loffe-Velenik 2003:
\triangleright A.-Ott-Velenik 2021:
exact computation, planar model, $\beta<\beta_{\mathrm{c}}$ any dimension, n.n. model, $\beta \ll 1$ any dimension, finite range, $\beta<\beta_{c}$ any dimension, superexponential, $\beta<\beta_{\mathrm{c}}$.

$\mathbf{O Z}$ sharp asymptotics when $\beta<\beta_{c}$

- One has the following Ornstein-Zernike asymptotics:

Theorem

Assume that $\beta<\beta_{\mathrm{c}}$. Let $\vec{s} \in \mathbb{S}^{d-1}$. Then, as $n \rightarrow \infty$,

$$
\left\langle\sigma_{0} ; \sigma_{n \vec{s}}\right\rangle_{\beta}=\frac{\Psi_{\beta}(\vec{s})}{n^{(d-1) / 2}} \mathrm{e}^{-\nu_{\beta}(\vec{s}) n}(1+\mathrm{o}(1))
$$

where the functions Ψ_{β} and $\nu_{\beta}(\vec{s})$ are positive and analytic in \vec{s}.

- The above result has a long history. Some milestones are
\triangleright Ornstein-Zernike 1914, Zernike 1916: first (non-rigorous) derivation
\triangleright Wu 1966, Wu et al 1976:
\triangleright Abraham-Kunz 1977, Paes-Leme 1978:
\triangleright Campanino-loffe-Velenik 2003:
\triangleright A.-Ott-Velenik 2021:
exact computation, planar model, $\beta<\beta_{c}$ any dimension, n.n. model, $\beta \ll 1$ any dimension, finite range, $\beta<\beta_{c}$ any dimension, superexponential, $\beta<\beta_{\mathrm{c}}$.

$\mathbf{O Z}$ sharp asymptotics when $\beta<\beta_{c}$

- One has the following Ornstein-Zernike asymptotics:

Theorem

Assume that $\beta<\beta_{\mathrm{c}}$. Let $\vec{s} \in \mathbb{S}^{d-1}$. Then, as $n \rightarrow \infty$,

$$
\left\langle\sigma_{0} ; \sigma_{n \vec{s}}\right\rangle_{\beta}=\frac{\Psi_{\beta}(\vec{s})}{n^{(d-1) / 2}} \mathrm{e}^{-\nu_{\beta}(\vec{s}) n}(1+\mathrm{o}(1))
$$

where the functions Ψ_{β} and $\nu_{\beta}(\vec{s})$ are positive and analytic in \vec{s}.

- The above result has a long history. Some milestones are
\triangleright Ornstein-Zernike 1914, Zernike 1916: first (non-rigorous) derivation
\triangleright Wu 1966, Wu et al 1976:
\triangleright Abraham-Kunz 1977, Paes-Leme 1978:
\triangleright Campanino-loffe-Velenik 2003:
\triangleright A.-Ott-Velenik 2021: exact computation, planar model, $\beta<\beta_{c}$ any dimension, n.n. model, $\beta \ll 1$ any dimension, finite range, $\beta<\beta_{c}$ any dimension, superexponential, $\beta<\beta_{\mathrm{c}}$.

$\mathbf{O Z}$ sharp asymptotics when $\beta<\beta_{c}$

- One has the following Ornstein-Zernike asymptotics:

Theorem

Assume that $\beta<\beta_{\mathrm{c}}$. Let $\vec{s} \in \mathbb{S}^{d-1}$. Then, as $n \rightarrow \infty$,

$$
\left\langle\sigma_{0} ; \sigma_{n \vec{s}}\right\rangle_{\beta}=\frac{\Psi_{\beta}(\vec{s})}{n^{(d-1) / 2}} \mathrm{e}^{-\nu_{\beta}(\vec{s}) n}(1+\mathrm{o}(1))
$$

where the functions Ψ_{β} and $\nu_{\beta}(\vec{s})$ are positive and analytic in \vec{s}.

- The above result has a long history. Some milestones are
\triangleright Ornstein-Zernike 1914, Zernike 1916: first (non-rigorous) derivation
\triangleright Wu 1966, Wu et al 1976:
\triangleright Abraham-Kunz 1977, Paes-Leme 1978:
\triangleright Campanino-loffe-Velenik 2003:
\triangleright A.-Ott-Velenik 2021:
exact computation, planar model, $\beta<\beta_{c}$ any dimension, n.n. model, $\beta \ll 1$ any dimension, finite range, $\beta<\beta_{c}$ any dimension, superexponential, $\beta<\beta_{\mathrm{c}}$.

$\mathbf{O Z}$ sharp asymptotics when $\beta<\beta_{c}$

- One has the following Ornstein-Zernike asymptotics:

Theorem

Assume that $\beta<\beta_{\mathrm{c}}$. Let $\vec{s} \in \mathbb{S}^{d-1}$. Then, as $n \rightarrow \infty$,

$$
\left\langle\sigma_{0} ; \sigma_{n \vec{s}}\right\rangle_{\beta}=\frac{\Psi_{\beta}(\vec{s})}{n^{(d-1) / 2}} \mathrm{e}^{-\nu_{\beta}(\vec{s}) n}(1+\mathrm{o}(1))
$$

where the functions Ψ_{β} and $\nu_{\beta}(\vec{s})$ are positive and analytic in \vec{s}.

- The above result has a long history. Some milestones are
\triangleright Ornstein-Zernike 1914, Zernike 1916: first (non-rigorous) derivation
\triangleright Wu 1966, Wu et al 1976:
\triangleright Abraham-Kunz 1977, Paes-Leme 1978:
\triangleright Campanino-loffe-Velenik 2003:
\triangleright A.-Ott-Velenik 2021: exact computation, planar model, $\beta<\beta_{c}$ any dimension, n.n. model, $\beta \ll 1$ any dimension, finite range, $\beta<\beta_{c}$ any dimension, superexponential, $\beta<\beta_{\mathrm{c}}$.

Probabilistic picture behind OZ asymptotics

- In order to study the subcritical Ising model, one can different graphical representations, for instance the high temperature expansion

$$
\left\langle\sigma_{0} ; \sigma_{x}\right\rangle_{\beta}=\sum_{\gamma: 0 \rightarrow x} q_{\beta}(\gamma)
$$

- The techniques developped during last two decades allow to couple "structurally 1D objects" with good mixing properties to directed random walks.

Probabilistic picture behind OZ asymptotics

- In order to study the subcritical Ising model, one can different graphical representations, for instance the high temperature expansion

$$
\left\langle\sigma_{0} ; \sigma_{x}\right\rangle_{\beta}=\sum_{\gamma: 0 \rightarrow x} q_{\beta}(\gamma)
$$

- The techniques developped during last two decades allow to couple "structurally 1D objects" with good mixing properties to directed random walks.

Probabilistic picture behind OZ asymptotics

- In order to study the subcritical Ising model, one can different graphical representations, for instance the high temperature expansion

$$
\left\langle\sigma_{0} ; \sigma_{x}\right\rangle_{\beta}=\sum_{\gamma: 0 \rightarrow x} q_{\beta}(\gamma)
$$

- The techniques developped during last two decades allow to couple "structurally 1D objects" with good mixing properties to directed random walks.
- Using this coupling, we can in many cases reduce difficult questions arising in the Ising model to much simpler (and more classical) ones about random walks.

Asymptotics for general A and B

Asymptotics for general A and B

- Given $A, B \in \mathbb{Z}^{d}$ and $\vec{s} \in \mathbb{S}^{d-1}$, we investigate the asymptotic behavior of

$$
\left\langle\sigma_{A} ; \sigma_{B+n \vec{s}}\right\rangle_{\beta}
$$

as $n \rightarrow \infty$.

Asymptotics for general A and B

- Given $A, B \Subset \mathbb{Z}^{d}$ and $\vec{s} \in \mathbb{S}^{d-1}$, we investigate the asymptotic behavior of

$$
\left\langle\sigma_{A} ; \sigma_{B+n \vec{s}}\right\rangle_{\beta}
$$

as $n \rightarrow \infty$.

- Of course, by symmetry, $\left\langle\sigma_{c}\right\rangle_{\beta}=0$ whenever $|C|$ is odd.

$$
\leadsto\left\langle\sigma_{A} ; \sigma_{B}\right\rangle_{\beta}=0 \text { whenever }|A|+|B| \text { is odd. }
$$

Asymptotics for general A and B

- Given $A, B \subseteq \mathbb{Z}^{d}$ and $\vec{s} \in \mathbb{S}^{d-1}$, we investigate the asymptotic behavior of

$$
\left\langle\sigma_{A} ; \sigma_{B+n \vec{s}}\right\rangle_{\beta}
$$

as $n \rightarrow \infty$.

- Of course, by symmetry, $\left\langle\sigma_{c}\right\rangle_{\beta}=0$ whenever $|C|$ is odd.

$$
\leadsto\left\langle\sigma_{A} ; \sigma_{B}\right\rangle_{\beta}=0 \text { whenever }|A|+|B| \text { is odd. }
$$

- We are thus left with two cases to consider:
$|A|,|B|$ both odd

Even-even correlations
$|A|,|B|$ both even

Asymptotics for general A and B

- Given $A, B \Subset \mathbb{Z}^{d}$ and $\vec{s} \in \mathbb{S}^{d-1}$, we investigate the asymptotic behavior of

$$
\left\langle\sigma_{A} ; \sigma_{B+n \vec{s}}\right\rangle_{\beta}
$$

as $n \rightarrow \infty$.

- Of course, by symmetry, $\left\langle\sigma_{c}\right\rangle_{\beta}=0$ whenever $|C|$ is odd.

$$
\leadsto\left\langle\sigma_{A} ; \sigma_{B}\right\rangle_{\beta}=0 \text { whenever }|A|+|B| \text { is odd. }
$$

- We are thus left with two cases to consider:
$|A|,|B|$ both odd

Even-even correlations
$|A|,|B|$ both even

- In the Odd-Odd case, the OZ asymptotics still hold.

Even-even correlations

- Substantially more delicate!

Even-even correlations

- Substantially more delicate!
- The analysis started with the case $|A|=|B|=2$. Physicists quickly understood that

$$
\left\langle\sigma_{\mathrm{A}} ; \sigma_{\mathrm{B}+n \vec{s}}\right\rangle_{\beta}=\mathrm{e}^{-2 \nu_{\beta}(\vec{s}) n(1+\mathrm{o}(1))} .
$$

Even-even correlations

- Substantially more delicate!
- The analysis started with the case $|A|=|B|=2$. Physicists quickly understood that

$$
\left\langle\sigma_{\mathrm{A}} ; \sigma_{\mathrm{B}+n \vec{s}}\right\rangle_{\beta}=\mathrm{e}^{-2 \nu_{\beta}(\vec{s}) n(1+\mathrm{o}(1))} .
$$

- However, concerning the prefactor, two conflicting predictions were put forward:

Polyakov 1969		Camp, Fisher 1971
n^{-2}	$d=2$	
$(n \log n)^{-2}$	$d=3$	$n^{-d} \quad$ for all $d \geq 2$
$n^{-(d-1)}$	$d \geq 4$	

(Note that these predictions only coincide when $d=2$, where they both agree with the exact computation obtained in Stephenson 1966 and Hecht 1967.)

Even-even correlations

- Substantially more delicate!
- The analysis started with the case $|A|=|B|=2$. Physicists quickly understood that

$$
\left\langle\sigma_{\mathrm{A}} ; \sigma_{\mathrm{B}+n \vec{s}}\right\rangle_{\beta}=\mathrm{e}^{-2 \nu_{\beta}(\vec{s}) n(1+\mathrm{o}(1))} .
$$

- However, concerning the prefactor, two conflicting predictions were put forward:

Polyakov 1969		Camp, Fisher 1971	
n^{-2}	$d=2$		
$(n \log n)^{-2}$	$d=3$	$n^{-d} \quad$ for all $d \geq 2$	
$n^{-(d-1)}$	$d \geq 4$		

(Note that these predictions only coincide when $d=2$, where they both agree with the exact computation obtained in Stephenson 1966 and Hecht 1967.)

- It turns out that Polyakov was right. This was first shown in
\triangleright Bricmont-Fröhlich 1985:

$$
\begin{array}{lll}
|A|=|B|=2 & \beta \ll 1 & d \geq 4 \\
|A|,|B| \text { even } & \beta \ll 1 & d \geq 2
\end{array}
$$

Even-even correlations

- The best nonperturbative result to date is the following:

Let $\tau(n)= \begin{cases}n^{2} & \text { when } d=2, \\ (n \log n)^{2} & \text { when } d=3, \\ n^{d-1} & \text { when } d \geq 4 .\end{cases}$

Theorem

Let $d \geq 2$ and $\beta<\beta_{c}$. Let $A, B \Subset \mathbb{Z}^{d}$ with $|A|$ and $|B|$ even and let $\vec{s} \in \mathbb{S}^{d-1}$. Then, there exist constants $0<C_{-} \leq C_{+}<\infty$ (depending on A, B, \vec{s}, β) such that, for all n large enough,

$$
\frac{C_{-}}{\tau(n)} \mathrm{e}^{-2 \nu_{\beta}(\vec{s}) n} \leq\left\langle\sigma_{A} ; \sigma_{B+n \vec{s}}\right\rangle_{\beta} \leq \frac{C_{+}}{\tau(n)} \mathrm{e}^{-2 \nu_{\beta}(\vec{s}) n}
$$

New directions and open problems

- Unclear how to implement the modern OZ theory, so the understanding remains limited for $\beta>\beta_{c}$ and $d \geq 3$. OZ asymptotics should hold (perturbative results by Bricmont-Fröhlich 1985).

New directions and open problems

- Unclear how to implement the modern OZ theory, so the understanding remains limited for $\beta>\beta_{c}$ and $d \geq 3$. OZ asymptotics should hold (perturbative results by Bricmont-Fröhlich 1985).
- The OZ asymptotics are false for the nearest-neighbor model on the square lattice (Wu-McCoy-Tracy-Barouch 1976), but are expected to hold for any other finite-range model.

New directions and open problems

- Unclear how to implement the modern OZ theory, so the understanding remains limited for $\beta>\beta_{\mathrm{c}}$ and $d \geq 3$. OZ asymptotics should hold (perturbative results by Bricmont-Fröhlich 1985).
- The OZ asymptotics are false for the nearest-neighbor model on the square lattice (Wu-McCoy-Tracy-Barouch 1976), but are expected to hold for any other finite-range model.
- The OZ decay was proved in the ground state of the quantum Ising model in a strong transverse magnetic field (Kennedy 1991). Could it be done more generally with the modern OZ theory?

ThANK YOU AND BUEN APETITO!

