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Context

I Goal: Given a random field X on Zd, describe X. Possible via Ursell functions (or
cumulants): for f1, . . . , fn local functions of the field, the n–th Ursell function is
defined by

Un(f1, . . . , fn) =
∂n

∂tn . . . ∂t1
log
(
µ(e

∑n
i=1 tifi )

)
|t1=···=tn=0 .

where µ is the law of X.

Under some regularity assumptions, the Ursell functions determine entirely the law µ.

We are going to be interested in the second Ursell function: the covariance (between f1

and f2).

I For the sake of concreteness, consider the Ising model on Zd given by the (formal)
Hamiltonian:

H = −
∑
{i,j}⊂Zd

Ji,jσiσj

with σ := (σi)i∈Zd ∈ {±1}, Ji,j ≥ 0 and the Boltzmann distribution:

Pβ(ω) ∝ e−βH(ω).

with β ≥ 0 and some configuration ω ∈ {±1}Z
d
.

1/11



Context

I Goal: Given a random field X on Zd, describe X.

Possible via Ursell functions (or
cumulants): for f1, . . . , fn local functions of the field, the n–th Ursell function is
defined by

Un(f1, . . . , fn) =
∂n

∂tn . . . ∂t1
log
(
µ(e

∑n
i=1 tifi )

)
|t1=···=tn=0 .

where µ is the law of X.

Under some regularity assumptions, the Ursell functions determine entirely the law µ.

We are going to be interested in the second Ursell function: the covariance (between f1

and f2).

I For the sake of concreteness, consider the Ising model on Zd given by the (formal)
Hamiltonian:

H = −
∑
{i,j}⊂Zd

Ji,jσiσj

with σ := (σi)i∈Zd ∈ {±1}, Ji,j ≥ 0 and the Boltzmann distribution:

Pβ(ω) ∝ e−βH(ω).

with β ≥ 0 and some configuration ω ∈ {±1}Z
d
.

1/11



Context

I Goal: Given a random field X on Zd, describe X. Possible via Ursell functions (or
cumulants): for f1, . . . , fn local functions of the field, the n–th Ursell function is
defined by

Un(f1, . . . , fn) =
∂n

∂tn . . . ∂t1
log
(
µ(e

∑n
i=1 tifi )

)
|t1=···=tn=0 .

where µ is the law of X.

Under some regularity assumptions, the Ursell functions determine entirely the law µ.

We are going to be interested in the second Ursell function: the covariance (between f1

and f2).

I For the sake of concreteness, consider the Ising model on Zd given by the (formal)
Hamiltonian:

H = −
∑
{i,j}⊂Zd

Ji,jσiσj

with σ := (σi)i∈Zd ∈ {±1}, Ji,j ≥ 0 and the Boltzmann distribution:

Pβ(ω) ∝ e−βH(ω).

with β ≥ 0 and some configuration ω ∈ {±1}Z
d
.

1/11



Context

I Goal: Given a random field X on Zd, describe X. Possible via Ursell functions (or
cumulants): for f1, . . . , fn local functions of the field, the n–th Ursell function is
defined by

Un(f1, . . . , fn) =
∂n

∂tn . . . ∂t1
log
(
µ(e

∑n
i=1 tifi )

)
|t1=···=tn=0 .

where µ is the law of X.

Under some regularity assumptions, the Ursell functions determine entirely the law µ.

We are going to be interested in the second Ursell function: the covariance (between f1

and f2).

I For the sake of concreteness, consider the Ising model on Zd given by the (formal)
Hamiltonian:

H = −
∑
{i,j}⊂Zd

Ji,jσiσj

with σ := (σi)i∈Zd ∈ {±1}, Ji,j ≥ 0 and the Boltzmann distribution:

Pβ(ω) ∝ e−βH(ω).

with β ≥ 0 and some configuration ω ∈ {±1}Z
d
.

1/11



Context

I Goal: Given a random field X on Zd, describe X. Possible via Ursell functions (or
cumulants): for f1, . . . , fn local functions of the field, the n–th Ursell function is
defined by

Un(f1, . . . , fn) =
∂n

∂tn . . . ∂t1
log
(
µ(e

∑n
i=1 tifi )

)
|t1=···=tn=0 .

where µ is the law of X.

Under some regularity assumptions, the Ursell functions determine entirely the law µ.

We are going to be interested in the second Ursell function: the covariance (between f1

and f2).

I For the sake of concreteness, consider the Ising model on Zd given by the (formal)
Hamiltonian:

H = −
∑
{i,j}⊂Zd

Ji,jσiσj

with σ := (σi)i∈Zd ∈ {±1}, Ji,j ≥ 0 and the Boltzmann distribution:

Pβ(ω) ∝ e−βH(ω).

with β ≥ 0 and some configuration ω ∈ {±1}Z
d
.

1/11



Context

We also define the inverse critical temperature by

βc = inf{β ≥ 0 : inf
x∈Zd
〈σ0σx〉β > 0}.

If there exists R such that If Ji,j = 0 for ‖i− j‖∞ ≥ R, we say that the model is
finite-range.

I Any local local functions f and g, there exist cf
A, cg

B ∈ R such that

f =
∑

A⊂supp(f)

cf
AσA g =

∑
B⊂supp(f)

cg
BσB,

with σA :=
∏

i∈A σi. In particular, one has

〈f ; g〉β := CovPβ [f , g] =
∑

A⊂supp(f)
B⊂supp(g)

cf
Acg

B〈σA;σB〉β .

Therefore, understanding 〈f ; g〉β amounts to understanding 〈σA;σB〉β .
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Context

I We will take β 6= βc. Moreover, we will take J super-exponentially decaying: for any
c > 0, one has

lim
‖x‖→∞

ec‖x‖J0,x = 0.

We first consider the simplest case: |A| = |B| = 1. We take A = {0} and B = {x} with
‖x‖ � 1.

Question: What can be said about the asymptotic behaviour of 〈σ0;σx〉β as ‖x‖ → ∞
?
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Two-point function: Ornstein and Zernike

I In 1914 and 1916, Ornstein and Zernike developed a (heuristic)
theory of correlations with quickly decaying interactions. In partic-
ular, they concluded that, at large distances away from the critical
temperature, the spin-spin correlation of the Ising model satisfies

〈σ0;σx〉β ∼ ‖x‖−(d−1)/2 e−νβ (x).

I Is it possible to establish this result rigourously ?
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OZ sharp asymptotics when β < βc

I One has the following Ornstein–Zernike asymptotics:

Theorem [A.–Ott–Velenik 2021]

Assume that β < βc. Let~s ∈ Sd−1. Then, as n→∞,

〈σ0 ;σn~s 〉β =
Ψβ(~s)

n(d−1)/2
e−νβ (~s)n (1 + o(1)),

where the functions Ψβ and νβ(~s) are positive and analytic in~s .

I The above result has a long history. Some milestones are

. Ornstein–Zernike 1914, Zernike 1916: first (non-rigorous) derivation

. Wu 1966, Wu et al 1976: exact computation, planar model, β < βc

. Abraham–Kunz 1977, Paes-Leme 1978: any dimension, n.n. model, β � 1

. Campanino–Io�e–Velenik 2003: any dimension, finite range, β < βc

. A.–Ott–Velenik 2021: any dimension, superexponential, β < βc.
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Probabilistic picture behind OZ asymptotics

I In order to study the subcritical Ising model, one can di�erent graphical
representations, for instance the high temperature expansion

〈σ0;σx〉β =
∑
γ:0→x

qβ(γ).

I The techniques developped during last two decades allow to couple “structurally
1D objects” with good mixing properties to directed random walks.

I Using this coupling, we can in many cases reduce di�icult questions arising in the
Ising model to much simpler (and more classical) ones about random walks.
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Asymptotics for general A and B

I Given A, B b Zd and~s ∈ Sd−1, we investigate the asymptotic behavior of

〈σA ;σB+n~s〉β

as n→∞.

I Of course, by symmetry, 〈σC〉β = 0 whenever |C| is odd.

〈σA ;σB〉β = 0 whenever |A|+ |B| is odd.

I We are thus le� with two cases to consider:

Odd-odd correlations

|A|, |B| both odd

Even-even correlations

|A|, |B| both even

I In the Odd–Odd case, the OZ asymptotics still hold.
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Even-even correlations

I Substantially more delicate!

I The analysis started with the case |A| = |B| = 2. Physicists quickly understood that

〈σA ;σB+n~s〉β = e−2νβ (~s)n (1+o(1)).

I However, concerning the prefactor, two conflicting predictions were put forward:

Polyakov 1969 Camp, Fisher 1971
n−2 d = 2

(n log n)−2 d = 3

n−(d−1) d ≥ 4

n−d for all d ≥ 2

(Note that these predictions only coincide when d = 2, where they both agree with the
exact computation obtained in Stephenson 1966 and Hecht 1967.)

I It turns out that Polyakov was right. This was first shown in

. Bricmont–Fröhlich 1985: |A| = |B| = 2 β � 1 d ≥ 4

. Minlos–Zhizhina 1988, 1996: |A|, |B| even β � 1 d ≥ 2
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Even-even correlations

I The best nonperturbative result to date is the following:

Let τ(n) =


n2 when d = 2,

(n log n)2 when d = 3,

nd−1 when d ≥ 4.

Theorem [Ott–Velenik 2019]

Let d ≥ 2 and β < βc. Let A, B b Zd with |A| and |B| even and let~s ∈ Sd−1.
Then, there exist constants 0 < C− ≤ C+ < ∞ (depending on A, B,~s, β) such
that, for all n large enough,

C−
τ(n)

e−2νβ (~s)n ≤ 〈σA ;σB+n~s〉β ≤
C+

τ(n)
e−2νβ (~s)n.
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New directions and open problems

I Unclear how to implement the modern OZ theory, so the understanding remains
limited for β > βc and d ≥ 3. OZ asymptotics should hold (perturbative results by
Bricmont–Fröhlich 1985).

I The OZ asymptotics are false for the nearest-neighbor model on the square lattice
(Wu–McCoy–Tracy–Barouch 1976), but are expected to hold for any other finite-range
model.

I The OZ decay was proved in the ground state of the quantum Ising model in a
strong transverse magnetic field (Kennedy 1991). Could it be done more generally with
the modern OZ theory ?
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Thank you and buen apetito!
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